LBNL Develops Tool to Quantify the Impact of Structural Materials

Words: Bronzella Cleveland

Architects, engineers, and urban planners are consistently seeking to access and manage the environmental impacts the buildings they produce. Although the operational energy of commercial structures in the United States accounts for approximately 35 percent of total electricity consumption, the materials used to build the building also are scrutinized for their environmental impact.

The Lawrence Berkeley National Laboratory (LBNL) has a new software tool for building professionals studying all phases of the complete life cycle of a building, from acquisition of materials to construction, the use of the building, and finally demolition and end of life to determine its true environmental footprint.

B-PATH model (Berkeley Lab Building Materials Pathways) estimates the energy, resources, and environmental impacts associated with the manufacture of structural materials; their effects on the energy use of a building during operation; and their impacts when the building is ultimately demolished and its constituent materials are reused, recycled, or disposed. Users can model the use of a range of typical structural building materials like concrete, steel, and lumber from their production, transportation, and construction until their end-of-life processes. It also lets users define which fuels and how much electricity is used in each of these processes, throughout the lifecycle.

“Minimizing the environmental impacts of a building throughout its entire lifecycle is a promising way of reducing the energy use and greenhouse gas emissions of buildings,” says Eric Masanet, the leader of the team that developed B-PATH. “The key is having a tool grounded in sound science to perform a lifecycle analysis – the data analysis and systems mass and energy balance modeling techniques to estimate the inputs of fuels, materials, and resources (and outputs of pollutants and waste) associated with all relevant processes in the lifecycle of a product or service.”

The model incorporates both current practice and best practice methods of manufacturing and construction to determine how they affect energy use. The user can tailor results to specific U.S. regions, which vary by climate, local and regional characteristics in materials supply chains, construction practices, and end-of-life pathways, as well as in the mix of fuels for electrical power supply sources and volume of water consumption.

Read more about B-PATH and download the model at http://eetd.lbl.gov/news/article/15177/quantifying-the-environmental-impact-of-structural-materials-with-b-path.

Westlake Royal Building Products™ to Showcase Be Boundless™ Campaign, Top Industry Trends and New Product Innovations at Pacific Coast Builders Conference (PCBC)

HOUSTON (June 18, 2024) — Westlake Royal Building Products™ (Westlake Royal), a Westlake company (NYSE:WLK), will showcase its Be Boundless™ campaign, top industry trends and new product innovations at the Pacific Coast Builders Conference (PCBC) in Anahe

Bringing Bricks Back To Life

BrickRecyc, a machine that removes old mortar from bricks, was invented by three entrepreneurs from Quebec in 2021. Tommy Bouillon, David Dufour, and Hugo Cartier were the innovation's source. The invention emerged out of necessity. Tommy Bouillon, head o

Are Your Employees Safe While Working In Hot Weather?

As the temperatures rise outside during summer months, so do the risks that employees working in hot conditions may be harmed by the dangerous effects it can have. Exposure to high temperatures can be deadly. It’s your responsibility as a business owner

Maximizing Efficiency with CrewTracks

In the masonry industry, efficient project management is crucial for success. CrewTracks addresses this need by streamlining various aspects of daily operations.